• 流覽次數:: 76
  • 分類: 產業區
  • 分享次數:
  • 作者: 音樂地圖
    • 201808/1104:05

    ◎Nielsen擁有的媒體數據專家Gracenote希望幫助音樂服務以更少的異常值製作出更好的混音,該公司公佈了一個名為Sonic Style Wednesday的新音樂數據集,該音樂數據集對9000萬首曲目的實際風格進行分類,而不是以該位藝人通常被認定的音樂類型。這將讓音樂服務可以使用Gracenote的數據來編輯譬如一份所有Taylor Swift的流行舞曲的播放清單,同時把一些聽起來太像鄉村樂的歌曲剔除在外;或者整合The Clash的老派龐克曲目而不把他們的一些新浪潮曲風歌曲添加進去。

    ◎Gracenote音樂和自動化總經理Brian Hamilton表示「播放清單現在相當於是新的專輯,為了能更好地發掘新音樂和個人化播放清單,音樂編輯正在呼籲要對個別的錄音作品更深入地了解」。Gracenote從事音樂數據業務已經將近20年,最初該公司幫助消費者透過一個巨大的專輯和錄音數據庫自動複製音頻CD,這些數據庫仍然支持Apple的iTunes等應用程式。近年來,Gracenote不僅擴展到錄音目錄,還將其分類以幫助音樂服務和其他音樂策劃者。

    ◎Gracenote正在使用AI人工智慧和機器學習技術,有效地教電腦聆聽數百萬首曲目並去理解所聽到的內容。而到最近,這些工作則聚焦於情緒和共鳴,其中包括「性感迷人的」,「時髦的」和「溫柔的苦樂參半」等類別。透過Sonic Styles,該公司將其AI工作擴展到包含接近450種風格描述符值。Hamilton表示「Sonic Style將神經網絡驅動的機器學習應用到全世界的音樂目錄,使Gracenote能夠在完整的音樂目錄中提供音樂風格的細粒度全視圖」。


    Nielsen-owned media data specialist Gracenote wants to help music services make better mixes with fewer outliers: The company announced a new music dataset called Sonic Style Wednesday that classifies 90 million tracks not by the genre the artist is known for, but the actual style of the recording.

    This will allow services making use of Gracenote's data to for instance compile a playlist of all of Taylor Swift's dance pop hits, while keeping anything that sounds too much like country out of the mix. Or combine The Clash's old-school punk tracks without adding some of the bands new wave fare.

    "Now that playlists are the new albums, music curators are clamoring for deeper insights into individual recordings for better discovery and personalization," said Gracenote music and auto GM Brian Hamilton.

    Gracenote has been in the music data business for close to 20 years. Originally, the company helped consumers automate the copying of audio CDs with a giant database of albums and sound recordings that still powers apps like Apple's iTunes. In recent years, Gracenote has expanded to not only catalog sound recordings, but also classify them to help music services and other curators.

    To do so, Gracenote is using artificial intelligence (AI) and machine learning technologies, effectively teaching computers to listen to millions of tracks and make sense of what they're hearing. Until recently, these efforts only focused on moods and vibes, with categories like "sultry," "sassy" and "gentle bittersweet."

    With Sonic Styles, the company expanded its AI work to include close to 450 style descriptor values. "Sonic Style applies neural network-powered machine learning to the world's music catalogs, enabling Gracenote to deliver granular views of musical styles across complete music catalogs," said Hamilton.

    Gracenote executives previously told Variety that using AI for music recognition can come with its own set of challenges. For instance, computers can listen to characteristics of an audio file that aren't actually music and determine that they are part of a certain mood or genre.

    "It can capture a lot of different things," said Gracenote's VP of research Markus Cremer for a previous behind-the-scenes look at the company's AI work. Unsupervised, Gracenote's system could for example decide to pay attention to compression artifacts, and match them to moods, with Cremer joking that the system may decide: "It's all 96 kbps, so this makes me sad."

    However, categorizing music on a song level can ultimately help make it more accessible — especially now that people don't spend a long time navigating through their carefully curated collections anymore, but simply ask their smart speaker to start playing something. Said Hamilton: "These new turbo-charged style descriptors will revolutionize how the world's music is organized and curated, ultimately delivering the freshest, most personalized playlists to keep fans listening."